

Journal of Photochemistry and Photobiology A: Chemistry 112 (1998) 97-102

The photochemical reaction between chlorine and chlorine perchlorate at 366 nm

M.I. L6pez l, A.E. Croce, J.E. Sicre *

lnstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Ouímica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, La Plata 1900, Argentina

Abstract

The photolysis of Cl₂ in the presence of Cl₂O₄ at 366 nm in the gaseous phase has been investigated at 303 K. The UV absorbance of the gas mixture has been recorded spectrophotometrically after each photolysis interval to monitor the reactant Cl_2O_4 pressure and determine quantitatively the chlorinated reaction products. A quantum yield for $Cl₂O₄$ consumption of 2.0 ± 0.2 has been determined. The main reaction products are Cl_2O_7 , Cl_2 and O_2 , accompanied by small quantities of Cl_2O_6 and OCIO. A mechanism involving ClO₄ radicals formed in the CI atom abstraction from Cl_2O_4 by Cl is proposed. $\qquad \circ$ 1998 Elsevier Science S.A.

Keywords: Photochemical reaction; Chlorine; Chlorine perchlorate

1. Introduction

The chemistry and photochemistry of the earth's atmosphere have received a great deal of interest during the last years. In particular, the chemistry of the oxides of the halogens, and especially of the chlorine oxides, deserved extensive attention, as these last compounds have been invoked to play an important role in the catalytic loss processes for stratospheric ozone [1,2].

Chlorine oxides may be classified in monochlor- and dichloroxi-derivatives. All these compounds are thermally unstable and may decompose explosively. Along the ClO_x series, only chlorine dioxide, OC10, is stable under certain conditions $[3]$. On the contrary, ClO and sym-ClO₃ may undergo fast self-association and disproportion [2]. The gas phase self-association of $CIO₃$ at room temperature leads almost exclusively to chlorine hexoxide, $Cl₂O₆$ (O₂ClO- $ClO₃$), as it has been determined not only by infrared spectrophotometry [4] but also by chemical analysis [5].

The last member of the series, sym-ClO₄, has been proposed as an intermediate in the mechanisms of the thermal decompositions of Cl_2O_6 [4-6] and of chlorine heptoxide, $Cl₂O₇$ [7], but has not been directly identified in the gas phase to date. Only recently, this species has been spectroscopically identified in the matrix isolation of the products of the vacuum thermolysis of Cl_2O_6 [8]. On the other hand, the

vacuum thermolysis of $Cl₂O₄$ (ClOClO₃) leads to the formation of ClO and ClO₃ [9]. Ab initio theoretical calculations have been performed [10] to interpret the structure and properties of the chlorine tetroxide radical.

It is well known that chlorine atoms readily abstract chlorine from CIOCI and CIOOCI, leading to CIO and C1OO, respectively [1,2]. Similarly, chlorine atoms are likely to react with chlorine perchlorate, $Cl + ClOClO₃ \rightarrow Cl₂ + ClO₄$. This last process most probably takes a relevant part in the photolysis of Cl_2 in the presence of Cl_2O_4 at 366 nm in the gaseous phase. As a consequence, the photochemical reaction is expected to occur through a mechanism involving $ClO₄$ radicals. To elucidate this mechanism, the present investigation has been undertaken.

2. Experimental details

The reaction was studied by applying the continuous photolysis method. Most of the experiments were performed in a portable quartz cell, 3 cm long and 4 cm outer diameter, which could be joined to a Bodenstein quartz spiral manometer used as a null instrument in connection with a mercury manometer. A U-trap connected the cell to a standard Pyrex vacuum line used for gas handling. The vessel could be separated from the vacuum line and manometer to be brought to a Cary 14 spectrophotometer. This allowed the reaction mixture to be photolysed and subsequently analysed spectropho-

^{*} Corresponding author.

Deceased.

tometrically. The cell was surrounded by a copper tube through which water from a thermostatic bath was circulated, and its temperature maintained at 303 ± 0.05 K by means of a Lauda electronic regulator.

A few experiments were performed in a cylindrical quartz cell 5 cm long and 5 cm outer diameter, connected to the manometers and to the vacuum line, and placed into the thermostatic bath.

The 366-nm line from a high-pressure mercury arc lamp (HBO 200 W) was isolated by means of a Bausch & Lomb grating monochromator ($\Delta \lambda = 19$ nm at 366 nm) and successively focused and collimated before reaching the front window of the reaction cell employing appropriate quartz lenses. The intensity of the light incident on the cell was measured periodically by means of the potassium ferrioxalate actinometer [11].

The reaction mixture consisted typically of about 55 Torr $Cl₂$ and of 8-22 Torr $Cl₂O₄$, and was photolyzed at 366 nm during successive intervals of 4-10 min to complete about 1 h. After each interval, the UV absorbance of the gas mixture was recorded using the spectrophotometer to determine quantitatively the chlorinated reaction products. These operations lasted up to 10 min, after which the mixture was further photolysed.

Preliminary experiments showed that no thermal reaction between Cl_2 and Cl_2O_4 takes place in the conditions of the present experiments. However, the spectrophotometric analysis of the reaction mixture prior to photolysis always revealed a small amount of OCIO between 0.1 and 0.4 Ton'. This observation agrees with those made in previous investigations [12].

Chlorine dioxide, chlorine, oxygen and argon were obtained and purified as it has been previously described [3,51.

Chlorine perchlorate was obtained by the 436-nm photolysis of chlorine dioxide [12] employing the last cell described above.

3. Results

The experiments carried out to establish the reaction stoichiometry showed that the 366-nm photolysis of $Cl₂$ in the presence of $Cl₂O₄$ proceeds with an increase of total pressure. The photolysis of 54.1 Torr $Cl₂$ in the presence of 21.9 Torr $Cl₂O₄$ was performed during 210 min with a total pressure change of 14.8 Torr, and during additional 30 min without any subsequent pressure change. After this, a volatile fraction of 15.4 Torr in $O₂$ was separated from the reaction mixture by distillation at the liquid nitrogen temperature. Further distillation at 173 K of the residue allowed the separation of 67.3 Torr of $Cl₂$, which was identified by UV-visible spectrophotometry. The infrared spectrum of the fraction condensed at $173 K (8.1 Torr)$ showed the characteristic absorption bands of dichiorine heptoxide [13].

The ratio of the amounts of Cl_2O_4 to Cl_2O_7 to Cl_2 to O_2 of 3:1.1:1.8:2.1 clearly indicates that, within the limits of the experimental errors, the reaction stoichiometry is given by

$$
2Cl_2O_4 \rightarrow Cl_2O_7 + 1/2O_2 + Cl_2
$$

together with

$$
Cl_2O_4 \rightarrow 2O_2 + Cl_2
$$

In experiments in which the photolysis was interrupted in the way described in Section 2, besides Cl_2 , Cl_2O_4 , Cl_2O_7 and a small amount of OCIO, the intermediate stable product Cl_2O_6 could also be determined. The UV spectra of Cl_2O_4 [12], Cl_2O_6 [5], Cl_2 [14,15] and Cl_2O_7 [16] are depicted in Fig. 1. As it has been pointed out [17], being the whole set of absorption coefficients well-known and assuming the additivity of the absorbances of the single components, the application of Lambert-Beer law allows the calculation of the pressure of each of them on an empirical basis. First, Cl_2O_4 , Cl_2O_6 and Cl_2O_7 are the only components of the reaction mixture that absorb between 210 and about 260 nm. To

Fig. 1. Absorption cross-sections for Cl₂O₆ (\cdots), Cl₂O₄ \times 10 (\cdots). Cl₂O₇ \times 25 (\cdots) and Cl₂ \times 50 (\cdots), as a function of wavelength.

minimize the delay between the successive photolysis periods, only three wavelengths within this range, namely, 210, 230 and 250 nm were selected for the determination of these components. The absorption coefficients for Cl_2O_4 , Cl_2O_6 and $Cl₂O₇$ fitted from the spectrophotometric determinations at the three wavelengths given in Table 1 are in good agreement with those reported. On the other hand, calibrated absorption spectra of $Cl₂/OClO$ mixtures in the region 280-450 nm, allowed the correction by OClO of the total absorption measured at 340 nm. Once $Cl₂O₆$ has been determined, the absorbance of this compound at 340 nm is calculated, then subtracted from the absorption corrected by OC10 to obtain the amount of $Cl₂$.

In a typical set of experiments, the pressure of each reactant, Cl_2 and Cl_2O_4 , was measured in the portable cell and the initial UV-visible spectrum recorded. In this way, the initial composition of the reaction mixture was established. The cell filled with the gas mixture was then exposed to the 366-nm light during a given time interval, after which the total absorbance was recorded between 300 and 400 nm and at the four fixed wavelengths of 210, 230, 250 and 340 nm. The pressure results for Cl_2O_4 , Cl_2O_6 and Cl_2O_7 calculated from the spectrophotometric information are given in Table 2 as a function of the time of photolysis for the three sets of experiments. The pressure of $Cl₂O₄$ decreases linearly over almost the whole time range, while Cl_2O_6 and Cl_2O_7 pressures start from zero and increase as a function of time. Cl_2O_6 reaches a maximum pressure towards the time when Cl_2O_4 is almost totally consumed, and finally decays to zero. As for Cl_2 , the difference between the determination at 340 nm corrected by the absorptions of Cl_2O_6 and of OCIO at this wavelength, and the initial pressure of Cl_2 , yields the amount of this compound formed in a given time interval, subject to a relatively high average error as shown in Table 2. The set of experiments no. 2 have been performed in the presence of 402.9 Torr of the added gas Ar. Although an initial amount of OCIO of 0.35 Torr was determined for set no. 3, the pressure of OC10 after each photolysis period never exceeded about 0.20 Torr. The analytical method employed here does not allow to discriminate a contribution of the photochemical reaction to OCIO pressure from the amount of OC10 formed during the dark periods. The Cl_2O_4 , Cl_2O_6 and Cl_2O_7 pressures for the set of experiments no. 3 are also represented as a function of time in Fig. 2.

The quantum yield for $Cl₂O₄$ consumption can be calculated as $\Phi = \Delta (Cl_2O_4) / (I_{abs}\Delta t)$, where $\Delta (Cl_2O_4)$ indicates

Table 1

Absorption coefficients (in Torr⁻¹ cm⁻¹) for Cl_2O_4 , Cl_2O_6 and Cl_2O_7 at the three wavelengths employed for the spectrophotometric determinations

λ (nm)	ε (Cl ₂ O ₄)	ε (Cl ₂ O ₆)	ε (Cl ₂ O ₇)
210	0.0290	0.538	0.0704
230	0.0381	0.441	0.0244
250	0.0254	0.436	0.0067

Table 2

time

Experimental Cl₂O₄, Cl₂O₆, and Cl₂O₇ pressures (Torr) as a function of

Fig. 2. Time-resolved pressures of Cl₂O₄ (\blacksquare), Cl₂O₆ × 10 (\bullet) and Cl₂O₇ (A). The solid lines represent the pressures calculated employing the rate constants in Table 4.

the amount of $Cl₂O₄$ consumed during a given photolysis time interval, Δt . I_{abs} denotes the intensity of the light absorbed by Cl₂, calculated as $I_{\text{abs}}=f_{\text{abs}}I_0$, where I_0 is the measured light intensity at 366 nm. The fraction of light absorbed by Cl_2 at 366 nm, f_{abs} , has been calculated employ-

Fig. 3. Time dependence of $Cl₂O₄$ pressure. The straight lines correspond to the linear regression of the results from the three sets of experiments: (\triangle) no. 1, (\blacksquare) no. 2 and (\spadesuit) no. 3.

Table 3 Quantum efficiency for Cl_2O_4 consumption (Φ)

Set of experiments	Cl ₂ (Torr)	$f_{\rm abs}$	I_0 (Torr min^{-1})	Slope (Torr min^{-1})	Φ
	54.0	0.42	0.23	-0.20	2.1
2	60.8	0.45	0.21	-0.18	1.9
3	56.9	0.43	0.56	-0.45	1.9

ing the Lambert-Beer law with the average $Cl₂$ pressure, the optical path length of the cell, $l = 3$ cm, and the absorption coefficient for Cl₂ at 366 nm, ε (Cl₂) = 1.44 × 10⁻³ Torr⁻¹ cm^{-1} . Fig. 3 shows the linear dependence of Cl₂O₄ pressure on time for the three sets of experiments. The slope of the straight lines, the input data f_{abs} and I_0 , as well as the resulting Φ values, are shown in Table 3. An experimental average quantum yield for $Cl₂O₄$ consumption of 2.0 ± 0.2 has been obtained from the results for the three sets of experiments.

At the photolysis wavelength, two of the reaction products, namely $Cl₂O₆$ and OClO, absorb light. Therefore, it is necessary to know to what extent this fact affects the fraction of the light intensity absorbed by Cl_2 , and which are the products of the secondary photolysis. The scarce amount of OC10 present during the experiments renders unimportant the influence of this substance. On the other hand, the maximum pressure of $Cl₂O₆$ determined in an experiment is approximately 1 Torr, consequently at a pressure of $Cl₂$ equal to 60 Torr, and the ratio of the absorbances at 366 nm for Cl_2O_6 to $Cl₂$ is 0.065 at the most. This affects the fraction of the light intensity absorbed by Cl_2 within the limits of $\pm 10\%$ found for the experimental error. It has been pointed out that the product Cl_2O_6 is transformed to Cl_2O_4 by thermal decomposition [5] and, at least in a matrix, also by photolysis [4].

4. Discussion

The experimental results have been interpreted by means of the mechanism that will be described in the following. A numerical simulation based on the Runge-Kutta algorithm has been applied to fit the time evolution of the concentrations of reactants and products.

The reaction begins with chlorine photodissociation [1]

$$
Cl_2 + h\nu(\lambda = 366 \text{ nm}) \rightarrow 2Cl \tag{1}
$$

followed by the reaction

$$
Cl + ClOCIO_3 \rightarrow Cl_2 + ClO_4 \tag{2}
$$

High rate coefficient values for other chlorine abstraction reactions by chlorine atoms, $Cl + ClOR \rightarrow Cl_2 + RO$ (R=FSO2 [18],H [19],CH3 *[19,20],tert-C4H9* [19],FCO [21]) have been recently reported. On the other hand, in the presence of OC10 the fast bimolecular reaction: $Cl + OClO \rightarrow 2ClO$ [1], also occurs. However, the rate of this last reaction should be much lower than that of reaction (2) under our experimental conditions.

Subsequently, the self-reaction of the $ClO₄$ radicals

$$
ClO4+ClO4\rightarrow 2ClO3+O2
$$
 (3)

and

$$
ClO4+ClO3\rightarrow Cl2O7
$$
 (4)

interpret the occurrence of $Cl₂O₇$ as a main reaction product. The $ClO₃$ radicals may undergo the recombination reaction $ClO_3 + ClO_3 \rightarrow Cl_2O_6$, for which a rate constant of the same order of magnitude as k_4 is expected [22]. However, reaction (4) is fast enough under the conditions of the present experiments, and consequently, the only fate for the $ClO₃$ radicals.

The formation of the relatively large amount of chlorine, besides of that produced through reaction (2), may be adequately accounted for by

$$
ClO4+ClO4 \rightarrow Cl2+4O2
$$
 (5)

in spite of the fact that the mechanism of this reaction is a matter to discuss.

The set of reactions $(1)-(5)$ lead to the rate equation $-d[Cl_2O_4]/dt=2I_{abs}$ from which a quantum efficiency for $Cl₂O₄$ decomposition of 2 can be calculated. Therefore, the mechanism allows an interpretation of the average quantum yield of 2.0 ± 0.2 for Cl₂O₄ obtained from the experimental results.

To account for the fact that $Cl₂O₆$ is formed to a larger extent at the beginning of each set of experiments when Cl_2O_4 pressures are higher, the exothermic reaction

$$
ClO4+Cl2O4 \rightarrow Cl2O6+OClO
$$
 (6)

may occur followed by

$$
ClO4 + OClO \rightarrow Cl2O6
$$
 (7)

On the other hand, the thermal decomposition of $Cl₂O₆$, which leads to the formation of $Cl₂O₄$ and $O₂$ through a firstorder kinetics [5], and much less the photolysis of Cl_2O_6 at 366 nm sensitized by chlorine [23,24], contribute to $Cl₂O₆$ depletion.

A mechanism for the thermal decomposition of $Cl₂O₆$ including the dissociation reaction

$$
Cl_2O_6 \rightarrow ClO_4 + OClO \tag{–7}
$$

has been recently proposed on thermodynamic grounds [25]. This reaction may be followed by the exothermic process (López and Sicre, to be published).

$$
ClO4 + OClO \rightarrow Cl2O4 + O2
$$
 (8)

The complex reaction between two $ClO₄$ radicals

$$
ClO4+ClO4\rightarrow 2OClO+2O2
$$
 (9)

accounts for the fact that $Cl₂O₆$ is still formed when small amounts of Cl_2O_4 are present as seen in Fig. 2.

If reactions (6) , (7) , (-7) , (8) and (9) , are included in the mechanism besides reactions $(1)-(5)$, the following reaction rate equation

$$
-d[C]_2O_4]/dt = 2I_{abs} + k_6[CIO_4][Cl_2O_4] - k_8[CIO_4][OCIO]
$$

results. The average experimental quantum efficiency of 2.0 ± 0.2 leads to the conclusion that the two last terms on the right-hand side member of the preceding equation balance each other along a given series of experiments.

The simulation employing reactions (1) – (7) , (-7) , (8) and (9) allows to draw the solid lines in Fig. 2 for the set of experiments no. 3. Table 4 shows the input data for the respective rate constants. The rate constants k_3, k_5, k_6, k_8 and k_9 were obtained by numerical fitting of the experimental results from Table 2, for the times before the reactant Cl_2O_4 is completely consumed. Due to the fact that reaction (2) is the only outcome for C! atoms, the numerical fitting does not depend on the value of this rate constant. The mechanism for Cl_2O_6 thermal decomposition given by reactions $(3)-(7)$, (-7) , (8) and (9) [24], different from those proposed in Ref. [5], and the experimental rate constant k_{exp} = 0.0209 min⁻¹ [5], allow to calculate k_8 as $k_{exp} \cong K_{-\frac{7}{2}}k_8$, where $K_{-\frac{7}{2}}$ is the equilibrium constant for $Cl₂O₆$ decomposition into $ClO₄$ and OCIO. The scarce photochemical decomposition of Cl_2O_6 , as well as the thermal decomposition of $Cl₂O₆$ during the dark periods within which the spectrophotometric measurements are performed, contribute to obtain a slightly higher value for k_8 by numerical fitting. Consequently, different k_8 values result for the three sets of experiments as shown in Table 3. The value for K_{-7} from Ref. [25] has been used in the calculations, and the numerical fitting is practically independent of the individual values of k_7 and k_{-7} . Therefore, a value for k_7 , a factor of at least 200 higher than k_8 , has been fixed.

From the simulation, a stationary pressure of about 0.05 Torr for $ClO₄$ radicals results. Although this conclusion arises from calculations based on indirect evidences, the potential Table 4

 a Data from Ref. $[25]$.

 $^h Torr⁻¹ min⁻¹ unless indicated otherwise.$ </sup>

 $^{\circ}$ Min⁻¹.

d For set of experiments no. 1.

For set of experiments no. 2.

t For set of experiments no. 3.

use of this system as source of $ClO₄$ through the reaction of chlorine atoms with chlorine perchlorate deserves further attention. Time-resolved experiments in which shortlived intermediate species are monitored would offer a more conclusive answer and are foreseen.

Acknowledgements

This research project was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas, the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires and the Universidad Nacional de La Plata. Helpful discussions with Dr. Enrique Castellano are gratefully acknowledged.

References

- [1] W.B. DeMore, S.P. Sander, C.J. Howard, A.R. Ravishankara, D.M. Golden, C.E. Kolb, R.F. Hampson, M.J. Kurylo, M.J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, JPL Publication 94-26, 1994.
- [2] R.P. Wayne, Atmos. Environ. 29 (1995) 2675.
- [3] M.I. López, A.E. Croce, J.E. Sicre, J. Chem. Soc., Faraday Trans. 90 (1994) 3391.
- [4] M. Jansen, G. Schatte, K.M. Tobias, H. Willner, Inorg. Chem. 27 (1988) 1703.
- [5] M.I. López, J.E. Sicre, J. Phys. Chem. 94 (1990) 3860.
- [6] A.J. Arvia, W.H. Basualdo, H.J. Schumacher, Z. Anorg. Allg. Chem. 286 (1956) 58.
- [7] R.V. Figini, E. Coloccia, H.J. Schumacher, Z. Phys. Chem. 14 (1958) 32.
- [8] H. Grothe, H. Willner, Angew. Chem., Int. Ed. Engl. 35 (1996) 768.
- [9] H. Grothe, H. Willner, Angew. Chem., Int. Ed. Engl. 33 (1994) 1482.
- [10] T.J. Van Huis, H.F. III Schaeffer, J. Chem. Phys. 106 (1997) 4028.
- [11] C.G. Hatchard, C.A. Parker, Proc. R. Soc. London, Ser. A 235 (1956) 518.
- [12] M.I. López, J.E. Sicre, J. Phys. Chem. 92 (1988) 563.
- [13] J.D. Witt, R.M. Hammaker, J. Chem. Phys. 58 (1973) 303.
- [14] D. Maric, J.P. Burrows, R. Mellor, G.K. Moortgat, J. Photochem. Photobiol. A Chem. 70 (1993) 205.
- [15] S. Hubinger, J.B. Nee, J. Photochem. Photobiol. A Chem. 86 (1995) 1.
- [16] C.L. Lin, J. Chem. Eng. Data 21 (1976) 411.
- [17] H. Mark, Appl. Spectrosc. 42 (1988) 1427.
- [18] A.E. Croce, C.J. Cobos, E. Castellano, Chem. Phys. Lett. 158 (1989) 157.
- **[19] A. Kukui, J. Roggenbuck, R.N.** Schindler, Ber. Bunsenges. Phys. Chem. I01 (1997) 281.
- [20] S.A. Carl, C.M. Roehl, R. Müller, G.K. Moorgat, J.N. Crowley, J. Chem. Phys. 100 (1996) 17191.
- [21] A.E. Croce, C.J. Cobos, E. Castellano, Chem. Phys. Lett. 266 (1997) 253.
- [22] C.J. Cobos, J. Troe, J. Chem. Phys. 83 (1985) 1010.
- [23] A.C. Burns, G.K. Rollefson, J. Am. Chem. Soc. 56 (1934) 2245.
- [24] M.H. Kalina, J.W.T. Spinks, Can. J. Res. B 16 (1938) 382.
- [25] A.J. Colussi, M.A. Grela, J. Phys. Chem. 97 (1993) 3775.